On Multidimensional Solitons in Gauge-invariant Nonlinear Sigma Models

I.L. Bogolubsky, A.A. Bogolubskaya

e-mail: bogolubs@jinr.ru, abogol@jinr.ru. Laboratory of Information Technologies, JINR, Dubna

Motivation. Nonlinear sigma models (NSMs) are of great importance in the modern mathematical physics due to their universality: they appear in various branches of fundamental science. Classical NSMs describe evolution in time of N component unit isovector field $s_{a}(\mathbf{x}, t)$ in $(D+$ 1)-dimensional space-time ($a=1, \ldots, N+1$); field manifolds of these models are unit spheres S^{N}. The most interesting cases correspond to $D=2,3$ and $N=2,3$.

Below we discuss the $A 3 M$ model with $N=2$ and $D=2$, introduced in [1], and the $A 4 Y M$ model with $N=3$ and $D=3$, introduced in [2]. The $A 4 Y M$ model is the straightforward extension of the $A 3 M$ model. On the other hand, one can see deep resemblance of the $A 4 Y M$ model with the bosonic sector of the reduced electroweak Salam-Weinberg theory, widely known as SU2-Higgs model, in which radial degree of freedom of the Higgs field is frozen (see the A4YM Lagrangian below). In fact, our gauged NSMs include: i) unit length scalar $(N+1)$ component field, with values on S^{N} :

$$
s_{1}^{2}+\ldots s_{N+1}^{2}=1 \quad(N=2,3)
$$

interacting with ii) vector field with $U(1)$ or $S U(2)$ symmetry (Maxwell or Yang-Mills).

A3M model in 2 dimensions. Consider minimal interaction of the S^{2} scalar field (A3field) with the Maxwell field $A_{\mu}(x)$. The resulting "A3M model" is described by the gauge-invariant Lagrangian:

$$
\begin{gather*}
\mathcal{L}=\eta^{2}\left(\overline{\mathcal{D}}_{\mu} s \mathcal{D}^{\mu} s_{+}+\partial_{\mu} s_{3} \partial^{\mu} s_{3}\right)-V\left(s_{a}\right)-\frac{1}{4} F_{\mu \nu}^{2}, \\
\overline{\mathcal{D}}_{\mu}=\partial_{\mu}+i g A_{\mu}, \quad \mathcal{D}_{\mu}=\partial_{\mu}-i g A_{\mu}, \\
s_{+}=s_{1}+i s_{2}, \quad s_{-}=s_{1}-i s_{2}, \\
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}, \\
V\left(s_{a}\right)=\beta\left(1-s_{3}^{2}\right), \tag{1}
\end{gather*}
$$

where $\quad \beta^{2}, \eta^{2} \quad$ are constants, $\quad\left[\eta^{2}\right]=L^{(1-D)}$, $\left[\beta^{2}\right]=L^{-(1+D)}, g \quad$ is a coupling constant, $\left[g^{2}\right]=L^{(D-3)}, \mu, \nu=0,1, \ldots, D$, and summation over repeated indices μ, ν is meant. The A3M model is a gauge-invariant extension of the classical Heisenberg antiferromagnet model with the "easy-axis" anisotropy; it possesses global $Z(2)$ and local $U(1)$ symmetries which might be connected with some surprising remarkable properties of its localized solutions.

The Euler-Lagrange equations of the model in dimensionless form are obtained by rescaling $x_{\mu} \rightarrow$ $g^{-1} \eta^{-1} x_{\mu}, A_{\mu} \rightarrow \eta^{-1} A_{\mu}$ (we denote $p=\beta^{2} g^{-2} \eta^{-4}$) and take the simplest form if the Lorentz gauge, $\partial_{\mu} A^{\mu}=0$,

$$
\begin{gather*}
\partial_{\mu} \partial^{\mu} s_{i}+\left[\partial_{\mu} s_{a} \partial^{\mu} s_{a}+2 A_{\mu} j^{\mu}+p\left(s_{3}^{2}-\delta_{i 3}\right)+\right. \\
\left.A_{\mu} A^{\mu}\left(s_{1}^{2}+s_{2}^{2}-\delta_{1 i}-\delta_{2 i}\right)\right] s_{i}- \\
-2 A_{\mu}\left(\delta_{2 i} \partial^{\mu} s_{1}-\delta_{1 i} \partial^{\mu} s_{2}\right)=0 \\
j_{\mu}=s_{2} \partial_{\mu} s_{1}-s_{1} \partial_{\mu} s_{2} \\
\partial_{\mu} \partial^{\mu} A_{\nu}+2 j_{\nu}+2\left(s_{1}^{2}+s_{2}^{2}\right) A_{\nu}=0, \tag{2}
\end{gather*}
$$

where $\quad \mu, \nu=0,1, \ldots, D, \quad i=1,2,3$.
In angular variables, $s_{1}=\sin \theta \cos \phi$, $s_{2}=\sin \theta \sin \phi, \quad s_{3}=\cos \theta$, the Lagrangian density reads:

$$
\begin{align*}
g^{-2} \eta^{-4} \mathcal{L} & =\partial_{\mu} \theta \partial^{\mu} \theta+\sin ^{2} \theta\left[\partial_{\mu} \phi \partial^{\mu} \phi-\right. \\
- & \left.2 A_{\mu} \partial^{\mu} \phi+A_{\mu} A^{\mu}-p\right]-\frac{1}{4} F_{\mu \nu}^{2} \tag{3}
\end{align*}
$$

and the Euler-Lagrange equations become:

$$
\begin{gather*}
\partial_{\mu} \partial^{\mu} \theta+\frac{1}{2} \sin 2 \theta\left[p-\partial_{\mu} \phi \partial^{\mu} \phi+2 A_{\mu} \partial^{\mu} \phi-\right. \\
\left.-A_{\mu} A^{\mu}\right]=0 \\
\partial_{\mu}\left[\sin ^{2} \theta\left(\partial^{\mu} \phi-A^{\mu}\right)\right]=0 \\
\partial_{\mu} \partial^{\mu} A_{\nu}+2 j_{\nu}+2 A_{\nu} \sin ^{2} \theta=0 \\
j_{\nu}=-\sin ^{2} \theta \partial_{\nu} \phi \tag{4}
\end{gather*}
$$

Time-independent soliton solutions $\phi(x)=\phi(\mathbf{x})$, $A_{0}=0, A_{k}(x)=A_{k}(\mathbf{x}), \theta(x)=\theta(\mathbf{x}), k=1, \ldots, D$, obey equations:

$$
\begin{align*}
\partial_{k}^{2} \theta-\frac{1}{2} \sin 2 \theta\left[p+\left(\partial_{k} \phi-A_{k}\right)^{2}\right] & =0 \\
\partial_{k}\left[\sin ^{2} \theta\left(\partial_{k} \phi-A_{k}\right)\right] & =0 \\
\partial_{k}^{2} A_{m}+2 \sin ^{2} \theta\left(\partial_{m} \phi-A_{m}\right) & =0 \tag{5}
\end{align*}
$$

$(k, m=1, \ldots, D$, summation over repeated k is meant). The localized distributions of unit isovector $s_{a}(\mathbf{x})$ in this model are divided into classes with different topological inidices ("charges") Q_{t}; solitons with nonzero topological charges are referred to as "topological solitons" [1]. We look for the topological solitons of the A3M model using the "hedgehoglike" ansatz for the A3-field

$$
\begin{gather*}
s_{1}=\cos m \chi \sin \theta(R), \quad s_{2}=\sin m \chi \sin \theta(R), \\
s_{3}=\cos \theta(R), \\
\sin \chi=\frac{y}{R}, \quad \cos \chi=\frac{x}{R}, \quad R^{2}=x^{2}+y^{2}, \tag{6}
\end{gather*}
$$

where m is an integer number. We use also the standard "vortex" ansatz for the vector field A_{μ}, describing localized distributions of a stationary magnetic field:

$$
\begin{equation*}
A_{0}=0 \tag{7}
\end{equation*}
$$

$A_{1}=A_{x}=-m a(R) \frac{y}{R^{2}}, \quad A_{2}=A_{y}=m a(R) \frac{x}{R^{2}}$.
For them $\quad Q_{t}=m$.
After rescaling $\left(a=\alpha e^{-1}, \quad R=r e^{-1}\right)$, we calculate $\delta H / \delta \theta$ and $\delta H / \delta \alpha$, arriving at coupled equations for $\theta(r)$ and $\alpha(r)$

$$
\begin{gather*}
\frac{d^{2} \theta}{d r^{2}}+\frac{1}{r} \frac{d \theta}{d r}-\sin \theta \cos \theta\left[\frac{m^{2}(\alpha-1)^{2}}{r^{2}}+p\right]=0 \tag{8}\\
\frac{d^{2} \alpha}{d r^{2}}-\frac{1}{r} \frac{d \alpha}{d r}+2 \sin ^{2} \theta(1-\alpha)=0 \tag{9}
\end{gather*}
$$

to be solved under the following boundary conditions:

$$
\begin{align*}
\theta(0) & =\pi, \quad \theta(\infty)=0 \tag{10}\\
\alpha(0) & =0, \quad \frac{d \alpha}{d r}(\infty)=0 \tag{11}
\end{align*}
$$

Using series expansion of $\theta(r)$ and $\alpha(r)$ at $r \rightarrow 0$, we find from Eqs. (8) and (9) for $m=1$

$$
\begin{gathered}
\theta(r)=\pi-C_{1} r+o(r) \\
\alpha(r)=r^{2}\left(E_{1}^{2}-\frac{1}{4} C_{1}^{2} r^{2}\right)+o\left(r^{4}\right),
\end{gathered}
$$

and for $m=2$

$$
\begin{gathered}
\theta(r)=\pi-C_{2} r^{2}+o\left(r^{2}\right) \\
\alpha(r)=r^{2}\left(E_{2}^{2}-\frac{1}{12} C_{2}^{2} r^{4}\right)+o\left(r^{6}\right)
\end{gathered}
$$

We studied the problem (8)-(11) by various numerical methods, among them shooting technique, stabilization method. The method based on power and asymptotic series and on the analytic continuation technique (re-expansions and Pade approximants) was used as well [3].

Detailed numerical investigation shows [4] that solutions exist and are stable for the values of dimensionless anisotropy parameter

$$
0<p<p_{c r} \approx 0.41
$$

The plots of radial functions $\alpha(r)$ and $\theta(r)$ and corresponding distributions of energy density and magnetic field have been presented in [1]. Note that the asymptotic value $\alpha_{\infty}=\alpha(\infty)$ decreases monotonically as p is increased, with $\alpha_{\infty} \rightarrow 1$ when $p \rightarrow 0$. With the function $\alpha_{\infty}(p)$ at hand one can find the asymptotic form of the soliton solution for $r \rightarrow \infty$:

$$
\theta(r) \approx \frac{T}{\sqrt{r}} \exp (-\sqrt{p} r), \quad T=\text { const }
$$

$$
\alpha(r) \approx \alpha_{\infty}-\left(1-\alpha_{\infty}\right) \frac{T^{2}}{2 r p} \exp (-2 \sqrt{p} r)
$$

The dependence of the soliton energy $E=2 \pi \int \mathcal{H}(r) r d r$ on p, where

$$
\begin{array}{r}
\mathcal{H}(r)=\left(\frac{d \theta}{d r}\right)^{2}+\sin ^{2} \theta\left[p+\frac{m^{2}(\alpha-1)^{2}}{r^{2}}\right]+ \\
+\frac{m^{2}}{2}\left(\frac{1}{r} \frac{d \alpha}{d r}\right)^{2} \tag{12}
\end{array}
$$

is depicted in Figure 1. It is important to note that $E(p)<8 \pi$ for $p<p_{c r} \approx 0.4088$ (recall that 8π is the energy value of the Belavin-Polyakov localized solutions in the 2D isotropic Heisenberg ferromagnet [5]). It means that for $0<p<p_{c r}$ the stringlike solutions of the A3M model describe spatially localized bound states of the $A 3$ - and the Maxwell fields, and hence it is natural to conjecture these $2 D$ solitons to be stable for $p<p_{c r}$.

Figure 1: Soliton energy for various p, the $A 3 M$ model

Figure 2: $\alpha(\infty)$ vs p for the $A 3 M$ model
It is interesting to note that the dependence $\alpha(\infty)$ on p proved to be surprisingly symmetric (see Figure 2). Presently the only way to explain such a symmetry is to refer to high $(U(1) \otimes Z(2))$ symmetry of the $A 3 M$ model (1).

Then we studied $Q_{t}=2$ solitons. We have found that for all $0<p<p_{c r} \approx 0.41$ their energies turned out to satisfy inequality

$$
E_{\text {sol }}\left(Q_{t}=2, p\right)<2 * E_{\text {sol }}\left(Q_{t}=1, p\right)
$$

This means that two $Q_{t}=1$ solitons attract to each other, forming the $Q_{t}=2$ bound states as a result of initial configuration evolution.

A4YM model for $\mathbf{D}=\mathbf{3}$. Further we shall consider another gauged sigma model, which describe minimal interaction of the easy-axis 4-component unit isovector field $q^{\alpha}\left(x^{\mu}\right)$ ("the A4-field") interacting with the vector $S U(2)$ Yang-Mills field $A_{\mu}^{a}\left(x^{\nu}\right)$.

The Lagrangian density of this ("the A4YM") model is:

$$
\begin{gather*}
\mathcal{L}=\mathcal{D}_{\mu} q^{a} \mathcal{D}^{\mu} q^{a}+\partial_{\mu} q^{0} \partial^{\mu} q^{0}-V\left(q^{0}\right)-\frac{1}{4}\left(F_{\mu \nu}^{a}\right)^{2} \\
\mathcal{D}_{\mu} q^{a}=\partial_{\mu} q^{a}+g \varepsilon^{a b c} A_{\mu}^{b} q^{c} \\
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g \varepsilon^{a b c} A_{\mu}^{b} A_{\nu}^{c} \\
V\left(q^{0}\right)=\beta\left[1-\left(q^{0}\right)^{2}\right] \tag{13}
\end{gather*}
$$

where $\alpha, \mu, \nu=0,1,2,3 ; \quad a, b, c=1,2,3 ; \quad \beta, g$ are coupling constants.

First we looked for stationary topological solitons of the A4YM model using the following ansatz for the A4- and the $S U(2)$ Yang-Mills fields:

$$
\begin{gather*}
q^{0}=\cos \theta(R), \quad q^{a}=\sin \theta(R) \frac{x^{a}}{R} \\
R^{2}=x^{2}+y^{2}+z^{2}, \quad A_{0}^{a}=0, \quad A_{i}^{a}=c(R) \varepsilon^{i a k} x^{k} \tag{14}
\end{gather*}
$$

Then the Hamiltonian density distributions of localized field bunches are spherically symmetric:

$$
\begin{align*}
& \mathcal{H}_{s t}(R)=\left(\frac{d \theta}{d R}\right)^{2}+\frac{2 \sin ^{2} \theta}{R^{2}}+4 g c \sin ^{2} \theta+ \\
& +2 g^{2} c^{2} R^{2} \sin ^{2} \theta+6 c^{2}+\left(\frac{d c}{d R}\right)^{2} R^{2}+ \\
& +\frac{1}{2} g^{2} c^{4} R^{4}+4 R c \frac{d c}{d R}+2 g R^{2} c^{3}+\beta \sin ^{2} \theta \tag{15}
\end{align*}
$$

Introduce dimensionless variables $r=g R$, $b(r)=g^{-1} c r^{2}$. Calculating $\delta \mathcal{H} / \delta \theta$ and $\delta \mathcal{H} / \delta r$, we get coupled equations $\quad\left(P=\frac{\beta}{g^{2}}\right)$

$$
\begin{array}{r}
\frac{d^{2} \theta}{d r^{2}}+\frac{2}{r} \frac{d \theta}{d r}-\sin \theta \cos \theta\left[\frac{2(b+1)^{2}}{r^{2}}+P\right]=0 \\
\frac{d^{2} b}{d r^{2}}-\frac{2 b}{r^{2}}-2 \sin ^{2} \theta(1+b)-\frac{b^{2}}{r^{2}}(b+3)=0 \tag{16}
\end{array}
$$

When searching for localized solutions we set the following boundary conditions:

$$
\begin{align*}
& \theta(0)=\pi, \quad \theta(\infty)=0 \\
& b(0)=0, \quad b(\infty)=B \tag{17}
\end{align*}
$$

Solutions to above problem (16)-(17) would define localized distributions $q^{\alpha}\left(x^{k}\right)(\alpha=0,1,2,3$, and $k=1,2,3$) of the A4-field with unit topological
charge, $Q_{t}=1$. Here Q_{t} is the "mapping degree" of continuous maps $R_{\text {comp }}^{3} \rightarrow S^{3}$. However such solutions have not been found. Because of that we look for more general ansatz.

More general ansatz keeps the "hedgehog" form for q^{α} and a generalized expression for A_{i} :

$$
\begin{equation*}
A_{i}^{a}(x)=\epsilon_{a i j} n_{j} C(R) R+\left(\delta_{a i}-n_{a} n_{i}\right) \frac{B(R)}{R}+n_{a} n_{i} \frac{E(R)}{R} . \tag{18}
\end{equation*}
$$

However such ansatz should respect Lorentz gauge. Equating $\frac{\partial A_{i}^{a}}{\partial x_{i}}=0$, we find $C(R)=B(R)+$ const. Finally we obtain the ansatz

$$
\begin{equation*}
A_{i}^{a}(x)=\epsilon_{a i j} n_{j} C(R) R+\delta_{a i} \frac{B(R)}{R}+\frac{G n_{a} n_{i}}{R} \tag{19}
\end{equation*}
$$

We calculate the Hamiltonian density $\mathcal{H}_{s t}(R)$ for such ansatz using the computer algebra system Maple [6]. Equating variational derivatives $\frac{\delta \mathcal{H}_{s t}(R)}{\delta C}, \quad \frac{\delta \mathcal{H}_{s t}(R)}{\delta B}, \quad \frac{\delta \mathcal{H}_{s t}(R)}{\delta \theta}$ to 0 , we obtain coupled equations for radial functions $C(R), B(R), \theta(R)$. Their solutions (if exist) define localized soliton solutions to A4YM model, the study of coupled equations for $C(R), B(R), \theta(R)$ with unknown G is in progress.

Conclusions. In this paper we discussed the existence and properties of localized solutions of the $A 3 M$ model $(D=2)$ and the A4YM model $(D=3)$. Topological solitons of these models can be considered as soliton analogues of the so-called defect solutions: $2 D$ strings-vortices in the Abelian Higgs model [7] and $3 D$ 't Hooft-Polyakov "hedgehogs"monopoles [8] correspondingly.

References

[1] I.L. Bogolubsky and A.A. Bogolubskaya. Phys. Lett.B, 395 (1997) 269-274.
[2] I.L. Bogolubsky., A.A. Bogolubskaya. Ann. Fond. Louis de Broglie, 23 (1998) 11-14.
[3] A.I. Bogolubsky and S.L. Skorokhodov. Programming and Computer Software, 30 (2004) 95-99.
[4] I.L. Bogolubsky, A.A. Bogolubskaya, A.I. Bogolubsky, S.L. Skorokhodov. In: Path Integrals New Trends and Perspectives. Proceedings of the 9 International Conference /Janke W., Peltser A. (Eds.) Singapore: World Scientific, 2008.
[5] A.A. Belavin and A.M. Polyakov. Pis'ma v Zh.E.T.F., 22 (1975) 503-506 [JETP Lett., 22 (1975) 245-248].
[6] Maple 12 User Manual.(http://www.maplesoft.com/ view.aspx?sid=5883).
[7] A. A. Abrikosov. Soviet Physics JETP, 5 (1957) 1174-1182; H.B. Nielsen and P. Olesen. Nuclear Physics, B61 (1973) 45-61.
[8] G.'t Hooft. Nuclear Physics, B79 (1974) 276-284; A.M. Polyakov. JETP Lett., 20 (1974) 194-195; A.M. Polyakov. JETP, 68 (1975) 1975-1990.

