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Motivation. Nonlinear sigma models (NSMs)
are of great importance in the modern mathemat-
ical physics due to their universality: they ap-
pear in various branches of fundamental science.
Classical NSMs describe evolution in time of N-
component unit isovector field sq(x,t) in (D +
1)-dimensional space-time (a =1,..., N + 1); field
manifolds of these models are unit spheres S™v. The
most interesting cases correspond to D = 2,3 and
N =2,3.

Below we discuss the A3M model with NV = 2 and
D = 2, introduced in [1], and the A4Y M model with
N =3 and D = 3, introduced in [2]. The A4Y M
model is the straightforward extension of the A3M
model. On the other hand, one can see deep resem-
blance of the A4Y M model with the bosonic sector
of the reduced electroweak Salam-Weinberg theory,
widely known as SU2-Higgs model, in which ra-
dial degree of freedom of the Higgs field is frozen
(see the A4dYM Lagrangian below). In fact, our
gauged NSMs include: i) unit length scalar (N +1)-
component field, with values on S :

512+ .. =1 (N =2,3),

-SN+1

interacting with ii) vector field with U(1) or SU(2)
symmetry (Maxwell or Yang-Mills).

A3M model in 2 dimensions. Consider
minimal interaction of the S? scalar field (A3-
field) with the Maxwell field A, (z). The resulting

“A3M model” is described by the gauge-invariant
Lagrangian:
L=10*Dys-DVs;+0,530"s3) —V(sa)— 4F3V,
@u =0, +igA,, D, =20,—1igA,,
Sy =81+ 182, S_ =81 — 182,
F,, =0,A, —0,A,,
V(sa) = B(1 - 53), (1)
where (32,7? are constants, [7)2} = 0-D)
[3?] =L-U+P) g is a coupling constant,

] = LP3) uv = 0,1,..,D, and summa-
tion over repeated indices p, v is meant. The A3M
model is a gauge-invariant extension of the clas-
sical Heisenberg antiferromagnet model with the
”easy-axis” anisotropy; it possesses global Z(2) and
local U(1) symmetries which might be connected
with some surprising remarkable properties of its
localized solutions.
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The Euler-Lagrange equations of the model in di-
mensionless form are obtained by rescaling z, —
g 'n7tz,, A, — n~ 1A, (we denote p = 32g~2n~*)
and take the simplest form if the Lorentz gauge,
OuA* =0,

0u0"s; + [04540"sa + 2A,5" + p(s3 — i3) +
ApA* (8T + 85 — 014 — 02;)]8i —
—2A,,(62:0" 51 — 61;0"52) = 0,
Ju = 520,51 — 510,52,

0,0" A, + 2, +2(s1 + s3)A, =0, (2)

where u,v=0,1,....D, i=1,2,3.
In angular variables, $1 = sin @ cos ¢,
so =sinfsing, s3 = cosf, the Lagrangian

density reads:
g 7L = 0,00"0 +sin? 6 | 0, ¢aﬂ¢ -

2
_ ZF‘“’

and the Euler-Lagrange equations become:

—24,0"p+ A AP —p]

D"+ 2A,0"p —
—A,AM ] =0
9y [sin® (0" — AM)] =0,

0, 0" A, + 24, + 24, sin* 0 = 0,
Ju=— sin® 00, ¢.

1
0,0"8 + 3 sin26 [ p —

Time-independent soliton solutions ¢(x)
Ag =0, Ap(z) = Ar(x), 0(z) = 0(x),k =

obey equations:

1,.

020 — % sin20 [p + (Opd — Ap)?]
8k [sin2 9(8k¢ - Ak)}
O Ay + 2502 0(0pd — Ary) = (5)

(k,m = 1,..,D, summation over repeated k is
meant). The localized distributions of unit isovector
Sa(x) in this model are divided into classes with dif-
ferent topological inidices (“charges”) @y; solitons
with nonzero topological charges are referred to as
“topological solitons” [1]. We look for the topologi-
cal solitons of the A3M model using the “hedgehog-
like” ansatz for the A3-field

0,
0,
0,

s1 =cosmysin@(R), so =sinmysinf(R),

sg = cosO(R),
sinxz%, COSX:}%, R? = 22 + 42, (6)



where m is an integer number. We use also the
standard “vortex” ansatz for the vector field A,,, de-
scribing localized distributions of a stationary mag-

netic field:
AO = 07
T
Ay=A,=ma(R)—=;.

A1=A;=-ma(R) 2

Y
ﬁ ) (7)
For them @Q;=m.

After rescaling (a = ae™!, R = re™!), we cal-
culate 6H/660 and §H/d«, arriving at coupled equa-

tions for 6(r) and a(r)

20 1d0 m?(a — 1)

=7 ;%—smecose {T —l—p] =0, (8)
d%a 1do . 2
-5 ot amiil-a)=0,  (9)

to be solved under the following boundary condi-
tions:

6(0) =m, 6(c0) =0, (10)
a(0) =0, 2—(;(00) =0. (11)

Using series expansion of 6(r) and «(r) at r — 0,
we find from Egs. (8) and (9) for m =1

0(r) =m — Cyr+ o(r),

1
alr) = (B2 — {C3r%) + olr),

and for m = 2

O(r)=m— Cor? + 0(r2),

1
a(r) = TQ(ES - EC227"4) + 0(7’6).

We studied the problem (8)-(11) by various nu-
merical methods, among them shooting technique,
stabilization method. The method based on power
and asymptotic series and on the analytic contin-
uation technique (re-expansions and Pade approxi-
mants) was used as well [3].

Detailed numerical investigation shows [4] that
solutions exist and are stable for the values of di-
mensionless anisotropy parameter

0<p<per =~ 041.

The plots of radial functions «(r) and 6(r) and cor-
responding distributions of energy density and mag-
netic field have been presented in [1]. Note that the
asymptotic value ao, = a(oo) decreases monotoni-
cally as p is increased, with as — 1 when p — 0.
With the function as(p) at hand one can find the
asymptotic form of the soliton solution for r — oco:

0(r) 7

exp(—\/}_ﬂ“),

T = const,
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2

a(r) ®ax — (1 — aoo)2TTp exp(—24/pr).

The dependence of the
E =2r [H(r)rdr on p, where

o\ > 2o — 1)2
(5) + sin% [p—i— 771(0;72)]_‘_

~
~

soliton  energy

H(r)

m2

lda\?

is depicted in Figure 1. It is important to note that
E(p) < 8w for p < per ~ 0.4088 (recall that 87 is
the energy value of the Belavin-Polyakov localized
solutions in the 2D isotropic Heisenberg ferromag-
net [5]). It means that for 0 < p < p., the string-
like solutions of the A3M model describe spatially
localized bound states of the A3- and the Maxwell
fields, and hence it is natural to conjecture these 2D
solitons to be stable for p < pe;..

soliton energy, E
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Figure 1: Soliton energy
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Figure 2: a(c0) vs p for the A3M model

It is interesting to note that the dependence a(o0)
on p proved to be surprisingly symmetric (see Fig-
ure 2). Presently the only way to explain such a
symmetry is to refer to high (U(1) ® Z(2)) symme-
try of the A3M model (1).

Then we studied Q; = 2 solitons. We have found
that for all 0 < p < pe = 0.41 their energies
turned out to satisfy inequality

Esol(Qt = 2ap) < 2% Esol(Qt = ]-ap)



This means that two Q; = 1 solitons attract to each
other, forming the ¢ = 2 bound states as a result
of initial configuration evolution.

A4YM model for D = 3. Further we shall con-
sider another gauged sigma model, which describe
minimal interaction of the easy-axis 4-component
unit isovector field ¢*(z*) (“the A4-field”) in-
teracting with the vector SU(2) Yang-Mills field
Al (z).

The Lagrangian density of this (“the A4YM”)
model is:

1

L =7D,¢*Dq* + 8Hq08“q0 — V(qo) 1

(F,)?,
Duqa _ auqa + g€abCAZ c7
F, = 0,A% — 0,A5 + ge“bCAZAf,,
V(g") = B[1 - ("),

where o, u,v=0,1,2,3; a,b,c=1,2,3; [,g9 are
coupling constants.

First we looked for stationary topological solitons
of the A4YM model using the following ansatz for
the A4- and the SU(2) Yang-Mills fields:

a

" =cosf(R), q¢" = sin@(R)%,

R*=2+y2+2%, A2 =0, A?=c(R)e"“ 2" (14)
Then the Hamiltonian density distributions of lo-

calized field bunches are spherically symmetric:

2sin%0

R2

= ()

2
+2¢%¢? R%sin?0 + 6¢% + (j—;) R +

+ 4gesin®6 +

+192c4R4 + 4Rc£ + 2gR%c3 + Bsin?6. (15)
2 dR
Introduce dimensionless variables r = gR,
b(r) = g ter?. Caleulating §H /50 and §H/dr, we
get coupled equations (P = g%)
ﬁ 2d0 —sinf cosf M +P| =0
dr? = rdr r2 -
d*vb  2b .9 b2

When searching for localized solutions we set the
following boundary conditions:
6(0) 0(o0)

b(c0)

0,
B. (17)
Solutions to above problem (16)-(17) would define
localized distributions ¢®*(z*) (a = 0,1,2,3, and
k=1,2,3) of the Ad-field with unit topological

(13)
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charge, @Q; = 1. Here Q; is the “mapping degree” of
continuous maps Rfomp — S3. However such solu-
tions have not been found. Because of that we look
for more general ansatz.

More general ansatz keeps the “hedgehog” form
for ¢* and a generalized expression for A;:

B(R)

a1l
R

A () = eain; C(R) RHGai—nams) B(R)
(18)

However such ansatz should respect Lorentz gauge.

A

Equating % L =0, we find C(R) = B(R) + const.
i

Finally we obtain the ansatz

B(R) n Gngn;

R R
We calculate the Hamiltonian density Hg(R)

A? (J)) = €m;jnjC(R)R + O4i (19)

for such ansatz using the computer algebra
system Maple [6]. Equating variational deriva-
. IHst(R)  OHst(R)  0Hs(R)

tives , , to 0, we

obtain coupled equations for radial functions
C(R),B(R),0(R). Their solutions (if exist)
define localized soliton solutions to A4YM
model, the study of coupled equations for
C(R), B(R),0(R) with unknown G is in progress.

Conclusions. In this paper we discussed the ex-
istence and properties of localized solutions of the
A3M model (D = 2) and the A4YM model (D = 3).
Topological solitons of these models can be consid-
ered as soliton analogues of the so-called defect so-
lutions: 2D strings-vortices in the Abelian Higgs
model [7] and 3D ’t Hooft-Polyakov “hedgehogs”-
monopoles [8] correspondingly.
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