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Motivation. Nonlinear sigma models (NSMs)
are of great importance in the modern mathemat-
ical physics due to their universality: they ap-
pear in various branches of fundamental science.
Classical NSMs describe evolution in time of N -
component unit isovector field sa(x, t) in (D +
1)-dimensional space-time (a = 1, ..., N + 1); field
manifolds of these models are unit spheres SN . The
most interesting cases correspond to D = 2, 3 and
N = 2, 3.

Below we discuss the A3M model with N = 2 and
D = 2, introduced in [1], and the A4Y M model with
N = 3 and D = 3, introduced in [2]. The A4Y M
model is the straightforward extension of the A3M
model. On the other hand, one can see deep resem-
blance of the A4Y M model with the bosonic sector
of the reduced electroweak Salam-Weinberg theory,
widely known as SU2-Higgs model, in which ra-
dial degree of freedom of the Higgs field is frozen
(see the A4YM Lagrangian below). In fact, our
gauged NSMs include: i) unit length scalar (N +1)-
component field, with values on SN :

s1
2 + ...sN+1

2 = 1 (N = 2, 3),

interacting with ii) vector field with U(1) or SU(2)
symmetry (Maxwell or Yang-Mills).

A3M model in 2 dimensions. Consider
minimal interaction of the S2 scalar field (A3-
field) with the Maxwell field Aµ(x). The resulting
“A3M model” is described by the gauge-invariant
Lagrangian:

L=η2
(̄Dµs−Dµs++∂µs3∂

µs3

)−V (sa)− 1
4
F 2

µν,

D̄µ = ∂µ + igAµ, Dµ = ∂µ − igAµ,

s+ = s1 + is2, s− = s1 − is2,

Fµν = ∂µAν − ∂νAµ,

V (sa) = β(1 − s2
3), (1)

where β2, η2 are constants,
[
η2

]
= L(1−D),[

β2
]

= L−(1+D), g is a coupling constant,
[g2] = L(D−3), µ, ν = 0, 1, ..., D, and summa-
tion over repeated indices µ, ν is meant. The A3M
model is a gauge-invariant extension of the clas-
sical Heisenberg antiferromagnet model with the
”easy-axis” anisotropy; it possesses global Z(2) and
local U(1) symmetries which might be connected
with some surprising remarkable properties of its
localized solutions.

The Euler-Lagrange equations of the model in di-
mensionless form are obtained by rescaling xµ →
g−1η−1xµ, Aµ → η−1Aµ (we denote p = β2g−2η−4)
and take the simplest form if the Lorentz gauge,
∂µAµ = 0,

∂µ∂µsi + [∂µsa∂µsa + 2Aµjµ + p(s2
3 − δi3) +

AµAµ(s2
1 + s2

2 − δ1i − δ2i)]si −
−2Aµ(δ2i∂

µs1 − δ1i∂
µs2) = 0,

jµ = s2∂µs1 − s1∂µs2,

∂µ∂µAν + 2jν + 2(s2
1 + s2

2)Aν = 0, (2)

where µ, ν = 0, 1, ..., D, i = 1, 2, 3.
In angular variables, s1 = sin θ cosφ,

s2 = sin θ sinφ, s3 = cos θ, the Lagrangian
density reads:

g−2η−4L = ∂µθ∂µθ + sin2 θ [ ∂µφ∂µφ −
−2Aµ∂µφ + AµAµ − p ] − 1

4
F 2

µν (3)

and the Euler-Lagrange equations become:

∂µ∂µθ +
1
2

sin 2θ [ p − ∂µφ∂µφ + 2Aµ∂µφ −
−AµAµ ] = 0,

∂µ

[
sin2 θ(∂µφ − Aµ)

]
= 0,

∂µ∂µAν + 2jν + 2Aν sin2 θ = 0,

jν = − sin2 θ∂νφ. (4)

Time-independent soliton solutions φ(x) = φ(x),
A0 = 0, Ak(x) = Ak(x), θ(x) = θ(x), k = 1, ..., D,
obey equations:

∂2
kθ − 1

2
sin 2θ

[
p + (∂kφ − Ak)2

]
= 0,

∂k

[
sin2 θ(∂kφ − Ak)

]
= 0,

∂2
kAm + 2 sin2 θ(∂mφ − Am) = 0, (5)

(k, m = 1, ..., D, summation over repeated k is
meant). The localized distributions of unit isovector
sa(x) in this model are divided into classes with dif-
ferent topological inidices (“charges”) Qt; solitons
with nonzero topological charges are referred to as
“topological solitons” [1]. We look for the topologi-
cal solitons of the A3M model using the “hedgehog-
like” ansatz for the A3-field

s1 = cosmχ sin θ(R), s2 = sin mχ sin θ(R),
s3 = cos θ(R),

sin χ =
y

R
, cosχ =

x

R
, R2 = x2 + y2, (6)
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where m is an integer number. We use also the
standard “vortex” ansatz for the vector field Aµ, de-
scribing localized distributions of a stationary mag-
netic field:

A0 = 0,

A1 =Ax =−ma(R)
y

R2
, A2 =Ay =ma(R)

x

R2
. (7)

For them Qt = m.
After rescaling (a = αe−1, R = re−1), we cal-

culate δH/δθ and δH/δα, arriving at coupled equa-
tions for θ(r) and α(r)

d2θ

dr2
+

1
r

dθ

dr
− sin θ cos θ

[
m2(α − 1)2

r2
+ p

]
= 0, (8)

d2α

dr2
− 1

r

dα

dr
+ 2sin2θ(1 − α) = 0, (9)

to be solved under the following boundary condi-
tions:

θ(0) = π, θ(∞) = 0, (10)

α(0) = 0,
dα

dr
(∞) = 0. (11)

Using series expansion of θ(r) and α(r) at r → 0,
we find from Eqs. (8) and (9) for m = 1

θ(r) = π − C1r + o(r),

α(r) = r2(E2
1 − 1

4
C2

1r2) + o(r4),

and for m = 2

θ(r) = π − C2r
2 + o(r2),

α(r) = r2(E2
2 − 1

12
C2

2r4) + o(r6).

We studied the problem (8)-(11) by various nu-
merical methods, among them shooting technique,
stabilization method. The method based on power
and asymptotic series and on the analytic contin-
uation technique (re-expansions and Pade approxi-
mants) was used as well [3].

Detailed numerical investigation shows [4] that
solutions exist and are stable for the values of di-
mensionless anisotropy parameter

0 < p < pcr ≈ 0.41.

The plots of radial functions α(r) and θ(r) and cor-
responding distributions of energy density and mag-
netic field have been presented in [1]. Note that the
asymptotic value α∞ = α(∞) decreases monotoni-
cally as p is increased, with α∞ → 1 when p → 0.
With the function α∞(p) at hand one can find the
asymptotic form of the soliton solution for r → ∞:

θ(r) ≈ T√
r

exp(−√
pr), T = const,

α(r) ≈ α∞ − (1 − α∞)
T 2

2rp
exp(−2

√
pr).

The dependence of the soliton energy
E = 2π

∫ H(r)rdr on p, where

H(r) =
(

dθ

dr

)2

+ sin2θ

[
p +

m2(α − 1)2

r2

]
+

+
m2

2

(
1
r

dα

dr

)2

, (12)

is depicted in Figure 1. It is important to note that
E(p) < 8π for p < pcr ≈ 0.4088 (recall that 8π is
the energy value of the Belavin-Polyakov localized
solutions in the 2D isotropic Heisenberg ferromag-
net [5]). It means that for 0 < p < pcr the string-
like solutions of the A3M model describe spatially
localized bound states of the A3- and the Maxwell
fields, and hence it is natural to conjecture these 2D
solitons to be stable for p < pcr.
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Figure 1: Soliton energy for various p, the A3M model

Figure 2: α(∞) vs p for the A3M model

It is interesting to note that the dependence α(∞)
on p proved to be surprisingly symmetric (see Fig-
ure 2). Presently the only way to explain such a
symmetry is to refer to high (U(1)⊗Z(2)) symme-
try of the A3M model (1).

Then we studied Qt = 2 solitons. We have found
that for all 0 < p < pcr ≈ 0.41 their energies
turned out to satisfy inequality

Esol(Qt = 2, p) < 2 ∗ Esol(Qt = 1, p).
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This means that two Qt = 1 solitons attract to each
other, forming the Qt = 2 bound states as a result
of initial configuration evolution.

A4YM model for D = 3. Further we shall con-
sider another gauged sigma model, which describe
minimal interaction of the easy-axis 4-component
unit isovector field qα(xµ) (“the A4-field”) in-
teracting with the vector SU(2) Yang-Mills field
Aa

µ(xν).
The Lagrangian density of this (“the A4YM”)

model is:

L = DµqaDµqa + ∂µq0∂µq0 − V (q0) − 1
4
(F a

µν)2,

Dµqa = ∂µqa + gεabcAb
µqc,

F a
µν = ∂µAa

ν − ∂νAa
µ + gεabcAb

µAc
ν ,

V (q0) = β[1 − (q0)2], (13)

where α, µ, ν = 0, 1, 2, 3; a, b, c = 1, 2, 3; β, g are
coupling constants.

First we looked for stationary topological solitons
of the A4YM model using the following ansatz for
the A4- and the SU(2) Yang-Mills fields:

q0 = cos θ(R), qa = sin θ(R)
xa

R
,

R2 =x2+y2+z2, Aa
0 = 0, Aa

i = c(R)εiakxk. (14)

Then the Hamiltonian density distributions of lo-
calized field bunches are spherically symmetric:

Hst(R) =
(

dθ

dR

)2

+
2sin2θ

R2
+ 4gcsin2θ +

+2g2c2R2sin2θ + 6c2 +
(

dc

dR

)2

R2 +

+
1
2
g2c4R4 + 4Rc

dc

dR
+ 2gR2c3 + βsin2θ. (15)

Introduce dimensionless variables r = gR,
b(r) = g−1cr2. Calculating δH/δθ and δH/δr, we

get coupled equations (P =
β

g2
)

d2θ

dr2
+

2
r

dθ

dr
− sin θ cos θ

[
2(b + 1)2

r2
+ P

]
= 0,

d2b

dr2
− 2b

r2
− 2sin2θ(1 + b) − b2

r2
(b + 3) = 0. (16)

When searching for localized solutions we set the
following boundary conditions:

θ(0) = π, θ(∞) = 0,

b(0) = 0, b(∞) = B. (17)

Solutions to above problem (16)-(17) would define
localized distributions qα(xk) (α = 0, 1, 2, 3, and
k = 1, 2, 3) of the A4-field with unit topological

charge, Qt = 1. Here Qt is the “mapping degree” of
continuous maps R3

comp → S3. However such solu-
tions have not been found. Because of that we look
for more general ansatz.

More general ansatz keeps the “hedgehog” form
for qα and a generalized expression for Ai:

Aa
i (x)=εaijnjC(R)R+(δai−nani)

B(R)
R

+nani
E(R)

R
.

(18)
However such ansatz should respect Lorentz gauge.

Equating
∂Aa

i

∂xi
= 0, we find C(R) = B(R) + const.

Finally we obtain the ansatz

Aa
i (x) = εaijnjC(R)R + δai

B(R)
R

+
Gnani

R
. (19)

We calculate the Hamiltonian density Hst(R)
for such ansatz using the computer algebra
system Maple [6]. Equating variational deriva-

tives
δHst(R)

δC
,

δHst(R)
δB

,
δHst(R)

δθ
to 0, we

obtain coupled equations for radial functions
C(R), B(R), θ(R). Their solutions (if exist)
define localized soliton solutions to A4YM
model, the study of coupled equations for
C(R), B(R), θ(R) with unknown G is in progress.

Conclusions. In this paper we discussed the ex-
istence and properties of localized solutions of the
A3M model (D = 2) and the A4YM model (D = 3).
Topological solitons of these models can be consid-
ered as soliton analogues of the so-called defect so-
lutions: 2D strings-vortices in the Abelian Higgs
model [7] and 3D ’t Hooft-Polyakov “hedgehogs”-
monopoles [8] correspondingly.
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